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Abstract. I report on an implementation of an algorithm for the automated numerical calculation of spin-
and colour-correlated Born matrix elements in QCD. These spin- and colour-correlated matrix elements
are needed for NLO calculations in combination with the subtraction method. Both massless and massive
quarks are considered. There are no restrictions on the number of external particles. As a trivial sub-case,
the algorithm also applies to Born matrix elements without any correlations. These are sufficient for leading
order calculations.

1 Introduction

QCD processes will constitute the bulk of events at the
LHC. These processes provide information on the strong
interaction and form quite often important background
for searches of new physics. An accurate description of jet
physics is therefore mandatory. Although jet observables
can rather easily be modelled at leading order (LO) in
perturbation theory [1–11], this description suffers several
drawbacks. A leading order calculation depends strongly
on the renormalisation scale and can therefore give only an
order-of-magnitude-estimate on absolute rates. Secondly,
at leading order a jet is modelled by a single parton. This
is a very crude approximation and oversimplifies inter-
and intra-jet correlations. The situation is improved by
including higher order corrections in perturbation theory.

At present, there are many next-to-leading order
(NLO) calculations for 2 → 2 processes at hadron col-
liders, but only a few for 2 → 3 processes. Fully differen-
tial numerical programs exist for example for pp → 3 jets
[12–14], pp → V + 2 jets [15], pp → tt̄H [16,17] and
pp → H + 2 jets [18,19].

It is desirable to have NLO calculations for 2 → n
processes in hadron–hadron collisions with n in the range
of n = 3, 4, ..., 6, 7. QCD processes like pp → n jets form
often important backgrounds for the search of signals of
new physics. However, the complexity of the calculation
increases with the number of final-state particles. To over-
come the computational limitation, there have been in the
past years several proposals for the automated computa-
tion of next-to-leading order observables [20–34]. These
publications focussed mainly on the automated computa-
tion of loop integrals. Equally important is the compu-
tation of the real emission contribution. It is well known
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that in general an NLO observable will receive contribu-
tions from the virtual corrections and the real emission
part. Taken separately, each of the two contributions is di-
vergent due to the presence of infrared singularities. Only
the sum of the two is finite. There are several general
method available to handle this problem, like the phase-
space slicing method [35–37] or the subtraction method
[38–43]. In this paper I will focus on the dipole subtrac-
tion method [39–43]. The dipole subtraction method re-
quires the calculation of spin- and colour-correlated Born
matrix elements. In this paper I describe a method for
the automated calculation of these quantities. While the
kinematical part of the matrix elements is calculated nu-
merically, colour-correlation matrices are calculated sym-
bolically at the initialisation phase of the program. The
C++ library “GiNaC” [44] allows one to mix numerical
and symbolical code in a single program. The program
uses standard techniques like spinor methods [45–49] and
colour decomposition [50–56]. The program computes he-
licity amplitudes, which are decomposed into colour fac-
tors and partial amplitudes. The partial amplitudes are
computed with the help of Berends–Giele type recurrence
relations [1,57]. It should be noted that recently interest-
ing new methods emerged for the computation of partial
amplitudes [58–61].

This paper is organised as follows: In the following
section I present the general setup for the dipole subtrac-
tion method and review a few basic tools for the calcu-
lation of QCD amplitudes. Section 3 describes the algo-
rithm for the calculation of colour-correlated Born matrix
elements. The numerical implementation is discussed in
Sect. 4. Finally, Sect. 5 contains the conclusions and an
outlook. In an appendix I summarise the colour-ordered
Feynman rules and the colour- correlation operators. Fur-
thermore, I give some technical details on the implemen-
tation into a C++ program.



746 S. Weinzierl: Automated computation of spin- and colour-correlated Born matrix elements

2 General setup and basic tools

2.1 The dipole formalism

The starting point for the calculation of an infrared safe
observable O in hadron–hadron collisions is the following
formula:

〈O〉 =
∫

dx1f(x1)
∫

dx2

×f(x2)
1

2K(ŝ)
1

(2J1 + 1)
1

(2J2 + 1)
1

n1n2

×
∫

dφn (p1, p2; p3, ..., pn+2)

×O (p1, ..., pn+2) |An+2|2 . (1)

This equation gives the contribution from the n-parton fi-
nal state. The two incoming particles are labelled p1 and
p2, while p3 to pn+2 denote the final-state particles. f(x)
gives the probability of finding a parton a with momen-
tum fraction x inside the parent hadron h. A sum over all
possible partons a is understood implicitly. 2K(s) is the
flux factor, 1/(2J1 + 1) and 1/(2J2 + 1) correspond to an
averaging over the initial helicities and n1 and n2 are the
number of colour degrees of the initial-state particles. dφn

is the phase-space measure for n final-state particles, in-
cluding (if appropriate) the identical particle factors. The
matrix element |An+2|2 is calculated perturbatively.

At NLO one has the following contributions:

〈O〉NLO =
∫

n+1

On+1dσR +
∫
n

OndσV +
∫
n

OndσC. (2)

Here I used a rather condensed notation. dσR denotes the
real emission contribution, whose matrix element is given
by the square of the Born amplitudes with (n+3) partons
|A(0)

n+3|2. dσV gives the virtual contribution, whose matrix
element is given by the interference term of the one-loop
amplitude A(1)

n+2 with (n+2) partons with the correspond-
ing Born amplitude A(0)

n+2. dσC denotes a collinear sub-
traction term, which subtracts the initial-state collinear
singularities. Taken separately, the individual contribu-
tions are divergent and only their sum is finite. In order
to render the individual contributions finite, such that the
phase-space integrations can be performed by Monte Carlo
methods, one adds and subtracts a suitable chosen piece
[39–43]:

〈O〉NLO =
∫

n+1

(
On+1dσR − OndσA)

+
∫
n


OndσV + OndσC + On

∫
1

dσA


 . (3)

The matrix element corresponding to the approximation
term dσA is given as a sum over dipoles:∑

pairs i,j

∑
k �=i,j

Dij,k. (4)

Each dipole contribution has the following form:

Dij,k = − 1
2pi · pj

A(0) ∗
n+2

(
p1, ..., p̃(ij), ..., p̃k, ...

)

×Tk · Tij

T2
ij

Vij,kA(0)
n+2

(
p1, ..., p̃(ij), ..., p̃k, ...

)
.(5)

Here Ti denotes the colour charge operator [39] for parton
i and Vij,k is a matrix in the spin space of the emitter
parton (ij). Explicit formulae for the expressions Vij,k can
be found in the literature [39–43] and are not repeated
here. In the numerical program both the dipole terms for
massless and massive partons are implemented.

In general, the operators Ti lead to colour correlations,
while the Vij,k lead to spin correlations. The colour charge
operators Ti for a quark, gluon and antiquark in the final
state are

quark : A∗ (...qi...)
(
T a

ij

) A (...qj ...) ,

gluon : A∗ (...gc...)
(
if cab

) A (
...gb...

)
,

antiquark : A∗ (...q̄i...)
(−T a

ji

) A (...q̄j ...) . (6)

The corresponding colour charge operators for a quark,
gluon and antiquark in the initial state are

quark : A∗ (...q̄i...)
(−T a

ji

) A (...q̄j ...) ,

gluon : A∗ (...gc...)
(
if cab

) A (
...gb...

)
,

antiquark : A∗ (...qi...)
(
T a

ij

) A (...qj ...) . (7)

In the amplitude an incoming quark is denoted as an out-
going antiquark and vice versa.

The subtraction term can be integrated over the unre-
solved one-parton phase space. Due to this integration, all
spin correlations average out, but colour correlations still
remain. In a compact notation, the result of this integra-
tion is often written as

dσC +
∫
1

dσA = I ⊗ dσB + K ⊗ dσB + P ⊗ dσB. (8)

The notation ⊗ indicates that colour correlation still re-
mains. The term I ⊗ dσB lives on the phase space of the
n-parton configuration and has the appropriate singular-
ity structure to cancel the infrared divergences coming
from the one-loop amplitude. Therefore dσV + I ⊗ dσB is
infrared finite.

The purpose of the paper is to set up a numerical pro-
gram for the automated computation of the terms∫

n+1

(
On+1dσR − OndσA)

(9)

and ∫
n

On

(
I ⊗ dσB + K ⊗ dσB + P ⊗ dσB)

. (10)

This requires the computation of the matrix elements with
(n+3) partons with no spin or colour correlations (implicit
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in dσR) as well as the computation of matrix elements
with (n+2) partons with spin and colour correlations. The
subtraction terms in (9) involve spin and colour correla-
tions. The insertion operators I, K and P induce colour
correlations, but no spin correlations. One is therefore nat-
urally lead to the calculation of colour-ordered amplitudes
in a helicity basis. Basic techniques for such a task are re-
viewed in the next subsections.

2.2 Double line notation

In QCD one deals with quarks and gluons. Both types
of partons carry information on the colour degrees of free-
doms and the kinematical degrees of freedom. Quarks have
a colour index i, running from 1 to N and corresponding to
the fundamental representation of SU(N). The kinemati-
cal information can be represented for massless quarks by
Weyl spinors pA or pḂ , where the indices A or Ḃ run from
1 to 2. The corresponding information for gluons is in the
conventional approach represented by a colour index a,
running from 1 to N2 − 1 and which corresponds to the
adjoint representation of SU(N). The kinematical infor-
mation is represented by a Lorentz index µ, running from
0 to 3. It is useful, to treat quarks and gluons on the same
footing. To this aim, I follow the “double-line” approach
[62] and convert a gluon index to two quark indices. I do
this for the colour degrees of freedom, as well as for the
kinematical parts.

In detail, this is done as follows: In Feynman diagrams
one distinguishes edges and vertices. Edges are propaga-
tors as well as polarisation vectors or spinors for external
particles. Vertices are all interaction vertices. For vector-
like couplings one can write

VµEµ = VµgµνEν = Vµ

(
1
2
σµ

AḂ
σ̄νḂA

)
Eν (11)

=
(

1√
2
Vµσµ

AḂ

) (
1√
2
σ̄νḂAEν

)
,

which allows us to replace a contraction over µ by two
contractions over A and Ḃ. One can apply the same trick
to the colour algebra:

V aEa = V aδabEb = V a
(
2T a

ijT
b
ji

)
Eb

=
(√

2T a
ijV

a
) (√

2T b
jiE

b
)

. (12)

Again, this equation allows us to replace a contraction
over an adjoint index a by two contractions over indices
i and j in the fundamental representation. The Feynman
rules for QCD in the double line notation are listed in
Appendix A.

2.3 Colour decomposition

In this paper I use the normalisation

Tr T aT b =
1
2
δab (13)

for the colour matrices. Amplitudes in QCD may be
decomposed into group-theoretical factors (carrying the
colour structures) multiplied by kinematic functions called
partial amplitudes [50–54]. These partial amplitudes do
not contain any colour information and are gauge-
invariant objects.

The colour decomposition is obtained by replacing the
structure constants fabc by

ifabc = 2
[
Tr

(
T aT bT c

) − Tr
(
T bT aT c

)]
, (14)

which follows from
[
T a, T b

]
= ifabcT c. The resulting

traces and strings of colour matrices can be further sim-
plified with the help of the Fierz identity:

T a
ijT

a
kl =

1
2

(
δilδjk − 1

N
δijδkl

)
. (15)

In the pure gluonic case tree level amplitudes with n ex-
ternal gluons may be written in the form

An(1, 2, ..., n) (16)

=
(

g√
2

)n−2 ∑
σ∈Sn/Zn

δiσ1 jσ2
δiσ2 jσ3

...δiσn jσ1
An (σ1, ..., σn) ,

where the sum is over all non-cyclic permutations of the
external gluon legs. The quantities An(σ1, ..., σn), called
the partial amplitudes, contain the kinematic information.
They are colour-ordered, e.g. only diagrams with a partic-
ular cyclic ordering of the gluon s contribute. The choice
of the basis for the colour structures is not unique, and
several proposals for bases can be found in the literature
[55,56]. Here I use the “colour-flow decomposition” [56].
As a further example I give the colour decomposition for
a tree amplitude with a pair of quarks:

An+2(q, 1, 2, ..., n, q̄)

=
(

g√
2

)n ∑
Sn

δiqjσ1
δiσ1 jσ2

...δiσn jq̄

×An+2(q, σ1, σ2, ..., σn, q̄). (17)

where the sum is over all permutations of the gluon legs.
In squaring these amplitudes a colour projector

δīiδjj̄ − 1
N

δīj̄δji (18)

has to applied to each gluon.
While the colour structure of the examples quoted

above is rather simple, the colour decomposition can be
become rather involved for amplitudes with many pairs
of quarks. A systematic algorithm for the colour decom-
position and the diagrams contributing to a single colour
structure is given in Sect. 3.

2.4 Spinor techniques

For the calculation of helicity amplitudes [45–49] one
chooses for the spinors corresponding to external mass-
less quarks two-component Weyl spinors. Two notations
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...

1n

off-shell

=
n−1

∑
j=1

1jj + 1n

+
n−2

∑
j=1

n−1

∑
k= j+1

1j
j +1k

k+1n

Fig. 1. The recurrence relation for the gluon current. An off-shell current with n legs can be computed recursively from off-shell
currents with fewer legs

for Weyl spinors are commonly used in the literature. The
relation between the bra-ket notation and the notation
using dotted and undotted indices is as follows:

|p+〉 = pB , 〈p + | = pȦ, (19)

|p−〉 = pḂ , 〈p − | = pA. (20)

Spinor products are denoted as follows:

〈pq〉 = 〈p − |q+〉 = pAqA, [qp] = 〈q + |p−〉 = qȦpȦ.

(21)

For the polarisation vectors of the external gluons one uses

ε+
µ (k, q) =

〈q − |γµ|k−〉√
2〈q − |k+〉 , ε−

µ (k, q) =
〈q + |γµ|k+〉√

2〈k + |q−〉 ,

(22)

where k is the momentum of the gluon and q is an arbi-
trary light-like reference momentum. In the “double-line”
notation this becomes

εȦB
+ (k, q) =

1
〈qk〉 kȦqB , εȦB

− (k, q) =
1

[kq]
qȦkB . (23)

For spinors corresponding to massive quarks the formulae
from [63] are used.

2.5 Recurrence relations

Recursive techniques [1,57] build partial amplitudes from
smaller building blocks, usually called colour-ordered off-
shell currents. Off-shell currents are objects with n on-
shell legs and one additional leg off-shell. Momentum con-
servation is satisfied. It should be noted that off-shell cur-
rents are not gauge-invariant objects. Recurrence relations
relate off-shell currents with n legs to off-shell currents
with fewer legs.

For the pure gluon current J ȦB
n , the recurrence rela-

tion reads

J ȦB
n

(
p±
1 , ..., p±

n ; q1, ..., qn

)
=

n−1∑
j=1

J ĊD
j

(
p±
1 , ..., p±

j ; q1, ..., qj

)

×J ĖF
n−j

(
p±

j+1, ..., p
±
n ; qj+1, ..., qn

)
×VDĊFĖHĠ(p1,j , pj+1,n)P ĠHȦB(p1,n)

+
n−2∑
j=1

n−1∑
k=j+1

J ĊD
j

(
p±
1 , ..., p±

j ; q1, ..., qj

)

×J ĖF
k−j

(
p±

j+1, ..., p
±
k ; qj+1, ..., qk

)
×J ĠH

n−k

(
p±

k+1, ..., p
±
n ; qk+1, ..., qn

)
×VDĊFĖHĠJİP

İJȦB(p1,n). (24)

This relation is pictorially shown in Fig. 1. In this formula,
the qi are the reference momenta for the external gluons,
P ĊDȦB(k) is the expression for the gluon propagator and
VBȦDĊFĖ(k1, k2) and VBȦDĊFĖHĠ are the expressions
for the three-gluon and four-gluon vertices, respectively. I
further used the notation

pi,j =
j∑

l=i

pl. (25)

The recursion starts with the current with one external
leg, which is given by the polarisation vector:

J ȦB
1

(
p±
1 ; q1

)
= εȦB

± (p1, q1) . (26)

Similar recurrence relations can be written down for
the quark and antiquark currents, as well as the gluon
currents in full QCD. The guiding principle is to follow
the off-shell leg into the “blob”, representing the sum of
all diagrams, and to sum on the RHS of the recurrence
relation over all vertices involving this off-shell leg and
off-shell currents with less external legs.

3 The method

In this section I describe in detail the method for the au-
tomated computation of Born matrix elements in QCD.
The matrix elements may or may not involve spin and/or
colour correlations.

3.1 Helicity amplitudes and spin correlations

The program computes helicity amplitudes. For a given set
of external momenta, each helicity amplitude evaluates to
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a complex number. If no spin correlations are present, the
matrix element is simply given as the squared modulus of
the amplitude summed over all helicity configurations. In
the dipole formalism, spin correlations are related to the
splittings g → gg and g → qq̄. In the original formulation
of Catani and Seymour they are written as

A∗
µ

(
..., p(ij), ...

)
SµνAν

(
..., p(ij), ...

)
, (27)

where Aµ denotes the amplitude with the polarisation vec-
tor of the emitter gluon (ij) amputated. Furthermore, the
spin correlation tensor is of the form

Sµν = vµvν , (28)

and the vector vµ satisfies

v · p(ij) = 0. (29)

Within the helicity formalism the spin correlation is eval-
uated as [64]

A∗
µSµνAν =

∣∣∣EA
(
..., p+

(ij), ...
)

+ E∗A
(
..., p−

(ij), ...
)∣∣∣2 ,

(30)

where A(..., p±
(ij), ...) denotes the helicity amplitude, where

the emitter gluon has “+”, respectively “−” helicity. E is
given by

E = εµ
−vµ =

〈q + |v|p(ij)+〉√
2

[
p(ij)q

] . (31)

In (31) q is as usual an arbitrary null reference momentum.

3.2 Amplitudes with more than one
quark–antiquark pair

If more than one quark–antiquark pair is present, we have
to sum over all quark permutations. An amplitude with
nq quark–antiquark pairs can be written as

A (
q̄1, q1, ..., q̄2, q2, ..., q̄nq , qnq

)

=
∑

σ∈S(nq)

(−1)σ


 nq∏

j=1

δflav
q̄jqσ(j)




×Â (
q̄1, qσ(1), ..., q̄2, qσ(2), ..., q̄nq , qσ(nq)

)
. (32)

Here, (−1)σ equals −1 whenever the permutation is odd
and equals +1 if the permutation is even. In Â each ex-
ternal quark–antiquark pair (q̄j , qσ(j)) is connected by a
continuous fermion line. The flavour factor δflav

q̄jqσ(j)
ensures

that this combination is only taken into account if q̄j and
qσ(j) have the same flavour.

3.3 The colour structure

The amplitude Â is decomposed into colour factors and
partial amplitudes:

Â =
∑

i

ciAi. (33)

Each partial amplitude Ai has a fixed cyclic ordering of the
external legs. For Born graphs we can take this ordering
such that a quark follows immediately its corresponding
antiquark in the clockwise orientation. This is shown in
Fig. 2.

That is to say, gluons are emitted from a quark line
only to the right when following the fermion line arrow.
If a gluon would be emitted to the left, we could draw
an equivalent diagram by flipping the off-shell current at-
tached to this gluon to the right of the fermion line.

All possible cyclic orderings are generated as follows:
We assume that the amplitude has ng external gluons, nq

external quarks and therefore necessarily also nq external
antiquarks. We first note, since a quark follows immedi-
ately its corresponding antiquark, we can treat an adja-
cent (q̄, q)-pair as an external “pseudo-leg”, which is per-
mutated together. The amplitude has therefore ng + nq

pseudo-legs. Then all possible cyclic orderings are ob-
tained by summing over all permutations of the pseudo-
legs and factoring out the cyclic permutations, e.g. each
ordering corresponds to an element of

S(ng + nq)/Z(ng + nq). (34)

This is equivalent to fixing the first external pseudo-leg
and summing over all permutation of the remaining (ng +
nq − 1) external pseudo-legs. Therefore there are

(ng + nq − 1)! (35)

inequivalent cyclic orderings.
For the pure gluon amplitude (nq = 0) each cyclic

ordering corresponds to one colour factor ci. The situation
is different if quarks are present (nq �= 0). This is related

...

...

...

1

2

3

kk +1
k +2

k +3

l

l +1
l +2 l +3

n

Fig. 2. The cyclic order of a partial amplitude. Without loss
of generality we can assume that quarks follow immediately
antiquarks in the clockwise order
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1

2
3

4

5

6

U(N)

U(1)
=⇒

1

2
3

4

5

6

U(N)

U(1)

Fig. 3. An example for the decomposition into colour clusters

to the fact that the gluon propagator in an SU(N) gauge
theory can be written as a propagator corresponding to an
U(N) gauge theory minus a part which subtracts out the
additional U(1) piece. The kinematic parts of the U(n)
and the U(1) pieces are the same:

P ḂAḊC(k) = ��� ���

=
i

k2

(
−εḂḊεAC

)
, (36)

However, they differ by their colour structure:

U(N) : �

�

�

�
= δilδkj ,

U(1) : �

�

�

�
= − 1

N
δijδkl. (37)

Note that each propagation of a U(1) gluon is accompa-
nied by a factor (−1)/N . It can be shown that the U(1)
gluon couples only to quark lines [56]. Therefore an ampli-
tude with nq quarks can contain up to (nq − 1) gluons of
type U(1). Each U(1) gluon separates a Born amplitude
into colour-disconnected pieces. We define a colour cluster
as a part of an amplitude, which is connected to the rest
of the amplitude only by an U(1) gluon and which does
not contain by itself any U(1) gluon. This concept is illus-
trated in Fig. 3, which shows a diagram with three quark–
antiquark pairs, one U(N) gluon and one U(1) gluon. This
diagram has two colour clusters, formed by the particles
(1, 2, 3, 4) and (5, 6), and separated by the U(1) gluon.
For an amplitude with nq quark–antiquark pairs one can
have from 1 to nq colour clusters. From the cluster decom-
position the colour structure can be read off easily. The
example in Fig. 3 contributes to the colour structure(

− 1
N

)
(δi2j3δi4j1) (δi6j5) . (38)

In general, given a colour cluster assignment, the corre-
sponding colour factor ci is constructed as follows: First
of all, the colour factor factorizes into a product of the
contributions from the individual colour clusters.

ci =
(

− 1
N

)(ncluster−1)

×
ncluster∏

j=1

ci,j . (39)

ci,j is the colour factor corresponding to cluster j. For a
cluster consisting only of gluons, ci,j is given by

g1, g2, ..., gn : ci,j = δi1j2δi2j3 ...δin−1jnδinj1 . (40)

An antiquark–quark pair can be treated effectively as a
single gluon. For example the colour factor associated to
a colour cluster consisting of an quark–antiquark pair and
(n − 2) gluons is given by

q̄1, q2, g3, ..., gn : ci,j = δi2j3δi3j4 ...δin−1jnδinj1 . (41)

As a further example we quote the colour factor for a
cluster with two quark- antiquark pairs:

q̄1, q2, g3, ..., q̄k, qk+1, ..., gn :
ci,j = δi2j3δi3j4 ...δik−1jk

δik+1jk+2 ...δin−1jnδinj1 . (42)

The pattern should be clear. The colour factor associated
to a individual colour cluster is just a sequence of Kro-
necker δs, corresponding to the cyclic ordering of the legs
belonging to this colour cluster.

It remains to derive a method, how all possible colour
clusterings can be generated. This is a combinatorial prob-
lem. For a fixed cyclic ordering we can generate all possible
colour clusterings as follows: We first sum over the num-
ber of possible colour clusters. Let ncluster be the number
of colour clusters, where ncluster ranges from 1 to nq. For
a fixed ncluster we then sum over all partitions of (ng +nq)
into ncluster pieces ncluster

j , such that

ncluster∑
j=1

ncluster
j = ng + nq. (43)

For a partition we take into account the order, such that
for example (1, 1, 2), (1, 2, 1) and (2, 1, 1) are distinct parti-
tions of 4. ncluster

j gives the number of external pseudo-legs
belonging to cluster j. Obviously, an adjacent antiquark–
quark pair has to belong to the same colour cluster, there-
fore it is counted as one external pseudo-leg. Finally, we
have to sum over all possible starting points of the colour
clusters with respect to the cyclic ordering. Here we ob-
serve that the members of a colour cluster need not be
adjacent in the cyclic ordering. An example for a colour
assignment in the cyclic ordering would be

(q̄, q) , g, g︸ ︷︷ ︸
cluster 1

, g, (q̄, q) , g︸ ︷︷ ︸
cluster 2

, g, g, g, g︸ ︷︷ ︸
cluster1

, g, (q̄, q) , g, g︸ ︷︷ ︸
cluster 3

. (44)

In this example, cluster 2 is embedded in cluster 1. The
summation over the starting points has to fulfill the fol-
lowing requirements.
(i) The external pseudo-leg 1 belongs to colour cluster 1.
(ii) The colour cluster (j + 1) starts after colour cluster j
for all j > 2. (Colour cluster 1 may start at the end of the
cyclic ordering.)
(iii) If the assignment of external pseudo-legs to colour
cluster j has been interrupted by the starting of a new
cluster k ( with k > j ), the assignment to cluster j can-
not be continued until all members of cluster k have been
assigned.

Requirement (iii) ensures that we cannot have a se-
quence like cluster 1, cluster 2, cluster 1, cluster 2. The
assignment of the external pseudo-legs to colour clusters
is now done as follows: Let(

mstart
2 , mstart

3 , ..., mstart
ncluster

)
(45)
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be an (ncluster − 1)-tuple, such that

mstart
j ≤ mstart

j+1 (46)

and

1 ≤ mstart
j ≤ 2 − j +

j−1∑
k=1

ncluster
k (47)

Then

nstart
j = mstart

j + j − 1 (48)

defines the starting point of cluster j for j = 2, ..., ncluster.
The starting points nstart

j together with the rules (i) and
(iii) define uniquely the assignment of the external pseudo-
legs to the colour clusters. Summing over all (ncluster −1)-
tuples in (45) subject to the constraints (46) and (47)
generates all possibilities with ncluster colour clusters, in
which colour cluster j has ncluster

j external pseudo-legs.
Since each colour cluster couples to the rest of the am-

plitude through a U(1)-gluon, it has to contain at least
one quark–antiquark pair. Therefore configurations, where
a colour cluster does not contain a quark–antiquark pair
are vetoed, with the trivial exception of the pure gluon
amplitude, which consists of one colour cluster and no
quark–antiquark pairs.

With the colour cluster decomposition and a method
for the generation of all cluster decomposition at hand,
I now turn back to the computation of the amplitude
squared. From (32) and (33) it is clear that we can write
any amplitude in the form

A =
∑

i

ciAi, (49)

where the ci are the colour factors and the Ai are the
partial amplitudes which contain the kinematical infor-
mation. In squaring the amplitude we obtain

|A|2 =
∑
i,j

Ai

(
ciPc†

j

)
A∗

j . (50)

The colour projector is given as a product with one factor
for each external particle:

P =
ng+2nq∏

k=1

Pk, (51)

where the individual colour projectors for a quark, anti-
quark and a gluon are

Pq = δīi, Pq̄ = δjj̄ , Pg = δīiδjj̄ − 1
N

δīj̄δji. (52)

The only non-trivial piece is given by the colour projec-
tor for the external gluons, which is a consequence of the
double-line notation. Note that

Mij =
(
ciPc†

j

)
(53)

defines a matrix which is independent of the four-momenta
of the particles. Therefore this matrix can be calculated
at the initialisation phase of the program. As each entry
is given as a contraction of Kronecker δs, this can be done
easily symbolically with the rules

δijδjk = δik, δii = N. (54)

The program uses the C++ library “GiNaC” for this task.
In Appendix (B.1) I give a small example program. The
resulting expression is a function of N , and after substi-
tuting N = 3 the result can be converted to a double
precision number. Note that run-time performance is not
an issue here, since this calculation occurs only at the
initialisation phase of the program. To obtain the ampli-
tude squared, the matrix Mij is first calculated at the
initialisation phase and stored in memory. Then for each
momentum configuration the vector of partial amplitudes
A = (A1, A2, ...) is computed. The amplitude squared is
then given by

|A|2 = A M A†. (55)

The inclusion of colour-correlations is rather straightfor-
ward. To include colour-correlation between particles a
and b, one replaces Pa and Pb in (51) by the appropri-
ate colour- correlation operator. For example, the colour-
correlation operator Tq · Tq̄ for a quark–antiquark pair
reads

���

���

��

��

= −1
2

(
δī1 j̄2δj2i1 − 1

N
δī1i1δj2 j̄2

)
. (56)

A complete list of all relevant colour-correlation operators
can be found in Appendix B. The corresponding matrices
Mij depend now on a and b but are still independent of
the four-momenta of the particles. Therefore they can be
computed at the initialisation phase of the program. For
a matrix element with n = ng + 2nq external particles,
there are

1
2
n(n − 1) (57)

possibilities of choosing the colour-correlated partons a
and b. Therefore the initialisation phase of the program
computes and stores n(n − 1)/2 different colour matrices
Mij . For realistic values of n, say n < 9, the CPU time
and memory requirements for this task are rather modest.

3.4 The partial amplitudes

It remains to discuss how the partial amplitudes Ai, en-
tering (49) and (50), are computed. This is done with the
help of off-shell currents and recurrence relations. Com-
pared to the introductory discussion of the pure gluonic
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off-shell current in Sect. 2.5 there are additional complica-
tions: First of all, a rather trivial extension is given by the
fact that in full QCD we have to allow for the possibil-
ity of multiple quark–antiquark pairs. Secondly, and more
important, it is a fact that the recurrence relations have
to respect the decomposition of a partial amplitude into
colour clusters. The algorithm is summarised as follows.
(i) We consider coupled recurrence relations for the off-
shell currents corresponding to an U(N)-gluon, an U(1)-
gluon, quarks and antiquarks. Note that the U(N)-gluon
and the U(1)-gluon are treated separately, as the latter
couples only to quarks. It is also convenient to distinguish
the off-shell currents for the quarks and antiquarks, de-
pending on whether the quarks are massive or massless.
In the latter case specialised (and faster) routines can be
used, since only helicity conserving interactions enter.
(ii) All recurrence relation express an off-shell current of
type A as a sum over off-shell currents with fewer legs,
which are combined through the basic three- or four-valent
vertices of the theory. The recurrence relations takes into
account all possible interaction vertices, which contain A.
Note that the off-shell currents, which enter the RHS of
the recurrence relation need not be of type A. For the ex-
ample, the recurrence relation for an U(N)-gluon involves
the quark–antiquark–gluon vertex and therefore the off-
shell currents for a quark and an antiquark. In general,
the recurrence relations yield a coupled system of equa-
tions.
(iii) The off-shell parton for the quark current, the an-
tiquark current and the U(N)-gluon current belong to a
specific colour cluster a. The recurrence relation splits the
off-shell current with n external legs into off-shell currents
with less external legs. This splitting has to respect the
following selection rules.
– For the U(N)-current, the off-shell current attached
through the three- and four-gluon vertex have to contain
at least one parton belonging to colour cluster a. In the
off-shell quark and antiquark current, which are attached
through the gluon–quark–antiquark vertex to the U(N)-
gluon current, the off-shell quark and antiquark lines have
to belong to colour cluster a.
– For the off-shell quark current, the sub-current attached
through an U(N)-gluon must contain at least one parton
belonging to colour cluster a. On the other hand, the sub-
current attached through an U(1)-gluon may not contain
any parton of colour cluster a. Similar considerations ap-
ply to the antiquark current.
– Finally, the off-shell U(1)-current is rather simple and
the recurrence relation involves an quark and an antiquark
current, whose off-shell legs necessarily belong to the same
colour cluster.
(iv) As a further selection rule we have to veto config-
urations, where the off-shell current is divided into sub-
currents between leg j and (j +1), in the case where these
two legs belong to the same colour cluster b, which is dif-
ferent from the colour cluster a of the off-shell leg. That
is to say the recurrence relation where the off-shell leg
belongs to cluster a cannot split legs which belong to a
different colour cluster b.

3.5 The pure gluon amplitude

In principle, the pure gluon amplitude can be treated with
the methods discussed above. However the pure gluon am-
plitude is a rather special case, which leads to many addi-
tional simplifications. Since it is known that pure gluonic
processes will contribute significantly to the cross section
at the LHC, it is desirable to treat these processes sep-
arately with optimised routines, taking into account the
additional simplifications. The simplifications are as fol-
lows.
(1) There is only one colour cluster and the colour decom-
position is simply given by the (ng −1)! inequivalent cyclic
orderings, as in (16).
(2) U(1)-gluons can be ignored and the recurrence rela-
tion for the partial amplitudes is given by (24).
(3) In calculating the colour matrix Mij , the colour pro-
jectors Pg in (52) may be replaced by

Pg → δīiδjj̄ . (58)

3.6 QCD amplitudes with one electro-weak boson

The methods discussed above require only minor mod-
ifications to include amplitudes with QCD partons and
one electro-weak boson. As these are relevant to electron–
positron annihilation, electron–proton collisions or Z-
production at the LHC / Tevatron, these amplitudes have
been implemented as well. The amplitudes are computed
by considering a recurrence relation, which couples the
electro-weak current to an off-shell quark current and an
off-shell antiquark current.

4 Numerical implementation

The algorithms discussed above have been implemented
into a computer program. This numerical program can
compute Born matrix elements in QCD with spin and
colour correlations. To test the program I have first con-
sidered the case where spin and colour correlations are
absent. In this case one can compare the results with the
ones from the program Madgraph. I quote here the results
of this comparison for processes with up to seven external
particles. The labelling of the momenta is

p1p2 → p3, p4, ..., pn. (59)

p1 and p2 are the incoming momenta, p3 to pn are the out-
going momenta. For 2 → 2 processes I took the following
set of momenta (in units of GeV):

p1 = (45.0, 0.0, 0.0, −45.0),
p2 = (45.0, 0.0, 0.0, 45.0),
p3 = (45.0, −20.8997, −29.6778, 26.5976),
p4 = (45.0, 20.8997, 29.6778, −26.5976). (60)

The same initial-state momenta p1 and p2 are used for
all other processes. The final-state momenta for the 2 → 3
processes were chosen as

p3 = (41.8145, −9.20663, −26.7503, 30.7914),
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p4 = (17.3829, 12.8067, 10.7712, −4.70487),
p5 = (30.8026, −3.6001, 15.9791, −26.0865). (61)

For 2 → 4 processes I used

p3 = (29.9152, −18.1846, −8.69254, 22.1061),
p4 = (9.82719, 4.07529, 8.79524, −1.61538),
p5 = (22.171, −9.26417, 14.187, −14.2988),
p6 = (28.0866, 23.3735, −14.2898, −6.19197). (62)

Finally, for 2 → 5 processes I used

p3 = (20.165, −13.0392, 0.0298292, 15.3819),
p4 = (9.60811, 2.4114, 9.15728, −1.6264),
p5 = (20.5589, −7.64505, 15.4771, −11.166),
p6 = (18.087, 17.056, −3.25968, −5.06046),
p7 = (21.581, 1.21688, −21.4045, 2.47093). (63)

The strong coupling constant was taken to be αs = 0.118.
For this comparison, all quark masses have been set to
zero. The flavour labels serve only to distinguish identical
quarks from non-identical quarks. Table 1 shows the com-
parison of our program with Madgraph for the computa-
tion of the matrix elements corresponding to the indicated
processes. The results do not contain any averaging over
the colour degrees of freedom for the initial-state particles,
nor do they contain symmetry factors for the final-state
particles. As can be seen from the table, the agreement is
satisfactory.

To check spin and colour correlations I have compared
the program with existing NLO codes for e+e− → 4 jets
[64] and pp → tt̄g [65]. Furthermore I checked that the
Born matrix elements approach the corresponding sub-
traction terms in all collinear and soft limits.

Table 1. Comparison of our program with Madgraph for
various matrix elements with up to seven external particles

Process This work Madgraph
gg → gg 56203.4 56203.2
gd̄ → d̄g 8436.64 8436.62
ūd̄ → d̄ū 1374.01 1374.01
d̄d̄ → d̄d̄ 1287.74 1287.74
gg → ggg 21269.2 21269.3
gd̄ → d̄gg 3222.01 3222.02
ūd̄ → d̄ūg 56.459 56.4591
d̄d̄ → d̄d̄g 53.2424 53.2425
gg → gggg 1354.24 1354.22
gd̄ → d̄ggg 138.691 138.689
ūd̄ → d̄ūgg 0.975563 0.975546
d̄d̄ → d̄d̄gg 0.902231 0.902215
ūd̄ → d̄ūs̄s 0.0116469 0.0116467
ūd̄ → d̄ūūu 0.0524928 0.0524927
d̄d̄ → d̄d̄d̄d 0.0583822 0.0583821
ūd̄ → d̄ūs̄gs 0.000453678 0.000453671
ūd̄ → d̄ūūgu 0.00202449 0.00202446

Table 2. CPU time in seconds for the computation of some
matrix elements summed over all helicities and colours on a
standard PC (Pentium IV with 2 GHz). The examples consist
of the n gluon amplitudes, the amplitudes with a q̄, q-pair and
(n − 2) gluons and the amplitudes with two distinct q̄, q-pairs
and (n − 4) gluons

n 4 5 6 7 8
time for |A(g1, ..., gn)|2 0.0006 0.009 0.18 4 127
time for |A(q̄, q, g3, ..., gn)|2 0.0004 0.003 0.05 0.6 14
time for |A(q̄, q, q̄′, q′, g5, ..., gn)|2 0.0002 0.002 0.02 0.4 8

Table 2 gives an indication for the CPU time needed to
evaluate matrix elements of increasing complexity. It gives
the CPU time needed for the computation of the matrix
elements, summed over all colours and spins, correspond-
ing to the following cases: The amplitude A(g1, ..., gn)
with n gluons, the amplitude A(q̄, q, g3, ..., gn) with
an q̄, q-pair and (n − 2) gluons and the amplitude
A(q̄, q, q̄′, q′, g5, ..., gn) with two distinct q̄, q-pairs and (n−
4) gluons.

5 Conclusions and outlook

In this paper I discussed an algorithm for the automated
computation of spin- and colour-correlated Born matrix
elements in QCD. These matrix elements are needed for
NLO calculations in combination with the subtraction
method. I implemented the algorithm into a computer pro-
gram. The program handles QCD amplitudes with mass-
less and/or massive quarks. In addition, I have imple-
mented the extension to QCD amplitudes with one ad-
ditional electro-weak boson.

The methods presented here are part of a larger project
for the automated computation of observables at next-
to-leading order for LHC physics. The remaining missing
piece is the automated computation of the interference
term of the one-loop amplitude with the Born amplitude.
In a previous publication, we already reported on the auto-
mated computation of the one-loop integrals entering the
one-loop amplitude [31]. Work on the automated compu-
tation of the interference term is in progress.

Acknowledgements. I would like to thank Peter Uwer for useful
discussions and for the comparison of the subtraction terms for
pp → tt̄g.
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Appendix A: Feynman rules

In this appendix I summarise the colour-ordered Feynman
rules. I extract from each formula the coupling constant
and split the remainder into a colour part and a kinemat-
ical part.

A.1 Propagators, polarisation vectors
and polarisation sums

Gluon propagator

In Feynman gauge, the gluon propagator is given
by −igµνδab/k2. Contraction of the kinematical part
−igµν/k2 with (1/2)σ̄µḂAσ̄νḊC yields

P ḂAḊC(k) = ��� ���

=
i

k2

(
−εḂḊεAC

)
. (A.1)

The colour factor δab is contracted within the double-line
notation with

√
2T a

ij

√
2T b

kl:

√
2T a

ij δab
√

2T b
kl = δilδkj − 1

N
δijδkl. (A.2)

The colour structure is split into two pieces. The first piece
δilδkj corresponds to the propagation of a U(N) gluon,
whereas the second piece −δijδkl/N subtracts out the ad-
ditional U(1) gluon. Schematically we have

�

�

�

�
= δilδkj ,

�

�

�

�
= − 1

N
δijδkl. (A.3)

Note that each propagation of a U(1) gluon is accompa-
nied by a factor (−1)/N .

Quark propagator

The kinematical piece of the quark propagator reads

i
p/ − m

(A.4)

The colour factor is simply

� � = δij . (A.5)

Gluon polarisation vectors and colour projector

The gluon polarisation vectors are given by

εȦB
+ (k, q) =

1
〈qk〉 kȦqB , εȦB

− (k, q) =
1

[kq]
qȦkB . (A.6)

k is the momentum of the gluon and q is an arbitrary light-
like reference momentum. The dependence on q drops out
in gauge-invariant quantities.

As for the colour factor, in the conventional approach
we sum for the squared matrix element for each gluon
over all eight colour degrees of freedom. In the double-
line notation a factor

√
2T a

ij is moved at each end into the
colour projector. Therefore, the colour projector reads

√
2T a

ij

√
2T a

kl = δilδkj − 1
N

δijδkl. (A.7)

A.2 Vertices

Quark–gluon vertex

The kinematical part of the quark–gluon vertex is given
by

� ��

� ��

= −i
√

2εCAεḊḂ ,

� ��

�� �

= −i
√

2δ B
C δ Ȧ

Ḋ
. (A.8)

The colour factor is given by

��

� �

=
1√
2
δilδkj . (A.9)

Here I neglected terms proportional to δkl, which vanish
when contracted into the gluon propagator or the colour
projector of (A.7).

Three gluon vertex

The kinematical part of the three-gluon vertex is given by

�
��� ��

�
��� ���

��� ��

=
i√
2

[εCEεḊḞ (k3 − k2)AḂ + εEAεḞ Ḃ (k1 − k3)CḊ

+ εACεḂḊ (k2 − k1)EḞ ] . (A.10)

The colour factor reads
����

��������

=
1√
2
δi1j2δi2j3δi3j1 . (A.11)
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Four gluon vertex

The kinematical part of the four-gluon vertex is given by

� ��

� ��� ��

� ��

= 2i [2εAEεḂḞ εCGεḊḢ − εACεḂḊεEGεḞ Ḣ

− εAGεḂḢεCEεḊḞ ] . (A.12)

The colour factor reads

����

��������

����

=
1
2
δi1j2δi2j3δi3j4δi4j1 . (A.13)

Appendix B: Colour correlations

In this appendix I list all colour-correlation operators Ta ·
Tb between two partons in the double line notation.

A∗ (...a, ..., b, ...) (Ta · Tb) A (...a, ..., b, ...) . (B.1)

Their action between amplitudes is defined in (6) and (7).
As we write all amplitudes in the colour-flow decomposi-
tion, we would like to know the action of these operators
in this basis. In the following I denote the colour indices of
the amplitude A∗ with barred indices, the colour indices
of the amplitude A with un-barred indices.

Quark–quark (Tq · Tq)

���

���

��

��

=
1
2

(
δī1i2δī2i1 − 1

N
δī1i1δī2i2

)
. (B.2)

Quark–antiquark (Tq · Tq̄)

���

���

��

��

= −1
2

(
δī1 j̄2δj2i1 − 1

N
δī1i1δj2 j̄2

)
. (B.3)

Antiquark–antiquark (Tq̄ · Tq̄)

���

���

��

��

=
1
2

(
δj1 j̄2δj2 j̄1 − 1

N
δj1 j̄1δj2 j̄2

)
. (B.4)

Quark–gluon (Tq · Tg)

���

�������

��

��� ��

=
1
2

(
δī1i2δī2i1δj2 j̄2 − δī1 j̄2δj2i1δī2i2

)
. (B.5)

Antiquark–gluon (Tq̄ · Tg)

���

�������

��

��� ��

=
1
2

(
δj1 j̄2δj2 j̄1δī2i2 − δj1i2δī2 j̄1δj2 j̄2

)
. (B.6)

Gluon–gluon (Tg · Tg)

�������

�������

��� ��

��� ��

=
1
2

(
δī1i1δī2i2δj1 j̄2δj2 j̄1 − δī1i1δj2 j̄2δj1i2δī2 j̄1

−δj1 j̄1δī2i2δī1 j̄2δj2i1 + δj1 j̄1δj2 j̄2δī1i2δī2i1

)
. (B.7)

Appendix C: Details on the implementation

In this appendix I provide some details on the implemen-
tation of the algorithm into a C++ program. I will discuss
in a small example how the colour algebra is performed. I
will also give some hints on the implementation of loops
over multi-indices like permutation, partitions, etc.
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C.1 Colour algebra

Below I show a small program, which defines the colour
structures

c1 = δi1j2δi2j1 , c†
1 = δj2i1δj1i2 (C.1)

and contracts them:

c11 = c1c
†
1. (C.2)

The result is obviously c11 = N2, which equals 9 for N =
3.
#include <iostream>

#include ‘‘ginac/ginac.h’’

int main()

{
using namespace GiNaC;

// number of colours
int Nc = 3;

// define colour indices
ex i1 = idx( symbol("i1"), Nc );
ex i2 = idx( symbol("i2"), Nc );

ex j1 = idx( symbol("j1"), Nc );
ex j2 = idx( symbol("j2"), Nc );

// define colour structures
ex c1 = delta_tensor(i1,j2)*delta_tensor(i2,j1);
ex c1_conj = delta_tensor(j2,i1)*delta_tensor(j1,i2);

// square it and contract indices
ex c11 = c1_conj * c1;
c11 = c11.simplify_indexed();

// convert the result to a ‘‘double’’ variable
double c_double = real(ex_to<numeric>( c11 )).to_double();

std::cout << ‘‘result = ‘‘ << c_double << std::endl;

return 0;
}

C.2 Summing over multi-indices

The algorithms involves the summation over multi-indices.
A rather simple example for a multi-index would be a
k-tuple (i0, i1, ..., ik−1) where each entry can take values
from 0 to N −1. Other examples are the sum over permu-
tations of k elements as in (34) or the multi-index in (45).
To make the code readable it is desirable to write the loop
as
{
int N = 7;
int k = 3;

multi_index i_multi(N,k);

for( i_multi.init(); !i_multi.overflow(); i_multi++)
{
// can use i_multi[0], i_multi[1], etc. here
}
}

and to hide the details on how the multi-index is increased
into a separate class. A possible header file for the class
multi_index could look as follows:

class multi_index {

public :
multi_index(size_t N, size_t k);

// functions
multi_index & init(void); // initialisation
bool overflow(void) const; // returns overflow flag
multi_index & operator++ (int); // postfix increment
size_t operator[](size_t i) const; // subscripting

// member variables :
protected :
size_t N;
std::vector<size_t> v;
bool flag_overflow;
};

This class contains a method init to initialise the multi-
index to the first value, an operator ++ which increases
the multi-index to the next value, and method overflow,
which returns true if all values have been run through.
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